威尼斯赌博游戏_威尼斯赌博app-【官网】

图片

威尼斯赌博游戏_威尼斯赌博app-【官网】

图片

New paper: High-order upwind SBP methods

Our new paper "On the robustness of high-order upwind summation-by-parts methods for nonlinear conservation laws" has been published in the Journal of Computational Physics.

arXiv:2311.13888 doi:10.1016/j.jcp.2024.113471 reproduce me!

Abstract

We use the framework of upwind summation-by-parts (SBP) operators developed by Mattsson (2017, doi:10.1016/j.jcp.2017.01.042) and study different flux vector splittings in this context. To do so, we introduce discontinuous-Galerkin-like interface terms for multi-block upwind SBP methods applied to nonlinear conservation laws. We investigate the behavior of the upwind SBP methods for flux vector splittings of varying complexity on Cartesian as well as unstructured curvilinear multi-block meshes. Moreover, we analyze the local linear/energy stability of these methods following Gassner, Sv?rd, and Hindenlang (2022, doi:10.1007/s10915-021-01720-8). Finally, we investigate the robustness of upwind SBP methods for challenging examples of shock-free flows of the compressible Euler equations such as a Kelvin-Helmholtz instability and the inviscid Taylor-Green vortex.

Together with Arpit Babbar and Hendrik Ranocha, we have submitted our paper "Automatic differentiation for Lax-Wendroff-type discretizations".

?

arXiv:2506.11719 reproduce me!

?

?

Abstract

Lax-Wendroff methods combined with discontinuous Galerkin/flux reconstruction spatial discretization provide a high-order, single-stage, quadrature-free method for solving hyperbolic conservation laws. In this work, we introduce automatic differentiation (AD) in the element-local time average flux computation step (the predictor step) of Lax-Wendroff methods. The application of AD is similar for methods of any order and does not need positivity corrections during the predictor step. This contrasts with the approximate Lax-Wendroff procedure, which requires different finite difference formulas for different orders of the method and positivity corrections in the predictor step for fluxes that can only be computed on admissible states. The method is Jacobian-free and problem-independent, allowing direct application to any physical flux function. Numerical experiments demonstrate the order and positivity preservation of the method. Additionally, performance comparisons indicate that the wall-clock time of automatic differentiation is always on par with the approximate Lax-Wendroff method.

Search